语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment"). We propose nine if-then relation types to distinguish causes vs. effects, agents vs. themes, voluntary vs. involuntary events, and actions vs. mental states. By generatively training on the rich inferential knowledge described in ATOMIC, we show that neural models can acquire simple commonsense capabilities and reason about previously unseen events. Experimental results demonstrate that multitask models that incorporate the hierarchical structure of if-then relation types lead to more accurate inference compared to models trained in isolation, as measured by both automatic and human evaluation.
translated by 谷歌翻译
Many problems involve the use of models which learn probability distributions or incorporate randomness in some way. In such problems, because computing the true expected gradient may be intractable, a gradient estimator is used to update the model parameters. When the model parameters directly affect a probability distribution, the gradient estimator will involve score function terms. This paper studies baselines, a variance reduction technique for score functions. Motivated primarily by reinforcement learning, we derive for the first time an expression for the optimal state-dependent baseline, the baseline which results in a gradient estimator with minimum variance. Although we show that there exist examples where the optimal baseline may be arbitrarily better than a value function baseline, we find that the value function baseline usually performs similarly to an optimal baseline in terms of variance reduction. Moreover, the value function can also be used for bootstrapping estimators of the return, leading to additional variance reduction. Our results give new insight and justification for why value function baselines and the generalized advantage estimator (GAE) work well in practice.
translated by 谷歌翻译
We present SODA: the first publicly available, million-scale high-quality social dialogue dataset. Using SODA, we train COSMO: a generalizable conversation agent outperforming previous best-performing agents on both in- and out-of-domain datasets. In contrast to most existing crowdsourced, small-scale dialogue corpora, we distill 1.5M socially-grounded dialogues from a pre-trained language model (InstructGPT; Ouyang et al., 2022). Dialogues are distilled by contextualizing social commonsense knowledge from a knowledge graph (Atomic10x; West et al., 2022). Human evaluation shows that dialogues in SODA are more consistent, specific, and (surprisingly) natural than prior human-authored datasets - e.g., DailyDialog (Li et al., 2017), BlendedSkillTalk (Smith et al., 2020). In addition, extensive evaluations show that COSMO is significantly more natural and consistent on unseen datasets than best-performing dialogue models - e.g., GODEL (Peng et al., 2022), BlenderBot (Roller et al., 2021), DialoGPT (Zhang et al., 2020). Furthermore, it is sometimes even preferred to the original human-written gold responses. We make our data, models, and code public.
translated by 谷歌翻译
Pre-trained language models, despite their rapid advancements powered by scale, still fall short of robust commonsense capabilities. And yet, scale appears to be the winning recipe; after all, the largest models seem to have acquired the largest amount of commonsense capabilities. Or is it? In this paper, we investigate the possibility of a seemingly impossible match: can smaller language models with dismal commonsense capabilities (i.e., GPT-2), ever win over models that are orders of magnitude larger and better (i.e., GPT-3), if the smaller models are powered with novel commonsense distillation algorithms? The key intellectual question we ask here is whether it is possible, if at all, to design a learning algorithm that does not benefit from scale, yet leads to a competitive level of commonsense acquisition. In this work, we study the generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce a novel commonsense distillation framework, I2D2, that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale models as the teacher model by two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model's own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-Tomic, that is of the largest and highest quality available to date.
translated by 谷歌翻译
Continuous pseudo-labeling (PL) algorithms such as slimIPL have recently emerged as a powerful strategy for semi-supervised learning in speech recognition. In contrast with earlier strategies that alternated between training a model and generating pseudo-labels (PLs) with it, here PLs are generated in end-to-end manner as training proceeds, improving training speed and the accuracy of the final model. PL shares a common theme with teacher-student models such as distillation in that a teacher model generates targets that need to be mimicked by the student model being trained. However, interestingly, PL strategies in general use hard-labels, whereas distillation uses the distribution over labels as the target to mimic. Inspired by distillation we expect that specifying the whole distribution (aka soft-labels) over sequences as the target for unlabeled data, instead of a single best pass pseudo-labeled transcript (hard-labels) should improve PL performance and convergence. Surprisingly and unexpectedly, we find that soft-labels targets can lead to training divergence, with the model collapsing to a degenerate token distribution per frame. We hypothesize that the reason this does not happen with hard-labels is that training loss on hard-labels imposes sequence-level consistency that keeps the model from collapsing to the degenerate solution. In this paper, we show several experiments that support this hypothesis, and experiment with several regularization approaches that can ameliorate the degenerate collapse when using soft-labels. These approaches can bring the accuracy of soft-labels closer to that of hard-labels, and while they are unable to outperform them yet, they serve as a useful framework for further improvements.
translated by 谷歌翻译
Inferring accurate posteriors for high-dimensional representations of the brightness of gravitationally-lensed sources is a major challenge, in part due to the difficulties of accurately quantifying the priors. Here, we report the use of a score-based model to encode the prior for the inference of undistorted images of background galaxies. This model is trained on a set of high-resolution images of undistorted galaxies. By adding the likelihood score to the prior score and using a reverse-time stochastic differential equation solver, we obtain samples from the posterior. Our method produces independent posterior samples and models the data almost down to the noise level. We show how the balance between the likelihood and the prior meet our expectations in an experiment with out-of-distribution data.
translated by 谷歌翻译
海面的风速检索对于科学和操作应用至关重要。除了天气模型,原位测量和遥感技术,尤其是卫星传感器外,还提供了互补的手段来监视风速。随着海面风产生传播水下的声音,水下声学录音也可以传递与风向相关的信息。尽管模型驱动的方案,尤其是数据同化方法,是解决地球科学反向问题的最新方案,但机器学习技术变得越来越有吸引力,可以完全利用观察数据集的潜力。在这里,我们介绍了一种深度学习方法,用于从水下声学中检索风速序列,这可能是由其他数据源(例如天气模型重新分析)进行补充的。我们的方法桥接数据同化和基于学习的框架,以从先前的物理知识和计算效率中受益。实际数据上的数值实验表明,我们优于最先进的数据驱动方法,其相对增益就RMSE而言高达16%。有趣的是,这些结果支持水下声学数据的时间动力学的相关性,以更好地告知风速的时间演变。他们还表明,在这里,多模式数据(此处的水下声学数据与ECMWF重新分析数据相结合)可能会进一步改善重建性能,包括相对于缺少水下的声学声学数据的鲁棒性。
translated by 谷歌翻译
我们介绍了Realtime QA,这是一个动态的问答(QA)平台,该平台宣布问题并定期评估系统(此版本每周)。实时质量检查询问当前世界,质量检查系统需要回答有关新事件或信息的问题。因此,它挑战了QA数据集中的静态,常规假设,并追求瞬时应用。我们在包括GPT-3和T5在内的大型语言模型上建立了强大的基线模型。我们的基准是一项持续的努力,该初步报告在过去一个月中提出了实时评估结果。我们的实验结果表明,GPT-3通常可以根据新的退休文档正确更新其生成结果,从而突出了最新信息检索的重要性。尽管如此,我们发现GPT-3倾向于在检索文件时返回过时的答案,这些文件没有提供足够的信息来找到答案。这表明了未来研究的重要途径:开放式域质量检查系统是否可以确定无法回答的案例,并与用户甚至检索模块进行通信以修改检索结果?我们希望实时质量检查能够刺激问题答案及其他问题的瞬时应用。
translated by 谷歌翻译
降雨事件的遥感对于运营和科学需求至关重要,包括天气预报,极端洪水,水循环监测等。降水量的降水量。然而,这种雷达的观察范围仅限于几百公里,促使对其他遥感方法的探索,在开阔的海洋上,这代表了不被陆基雷达覆盖的大面积。几十年来,众所周知,诸如Sentinel-1图像之类的C波段SAR图像在海面上表现出降雨签名。但是,SAR来源的降雨产品的开发仍然是一个挑战。在这里,我们提出了一种深度学习方法,以从SAR图像中提取降雨信息。我们证明,在接触和预处理的Sentinel-1/Nexrad数据集中训练的卷积神经网络,例如U-NET,显然优于最先进的过滤方案。我们的结果表明,在分割降水状态下的性能高,由1、3和10 mm/h的阈值描绘。与当前依靠Koch过滤器绘制二进制降雨图的方法相比,这些基于多阈值的模型可以为更高的风速提供降雨估计,因此对于数据同化天气预测或提高SAR的资格可能引起了极大的兴趣 - 衍生的风场数据。
translated by 谷歌翻译